Укажите чем отличаются принципы адресации компьютерных сетей

Обновлено: 05.10.2022

Еще одной новой проблемой, которую нужно учитывать при объединении трех и более компьютеров, является проблема их адресации. К адресу узла сети и схеме его назначения предъявляются следующие требования:

§ Адрес должен уникально идентифицировать компьютер в сети любого масштаба.

§ Схема назначения адресов должна сводить к минимуму ручной труд администратора и вероятность дублирования адресов.

§ Адрес должен иметь иерархическую структуру, удобную для построения больших сетей.

§ Адрес должен иметь по возможности компактное представление, чтобы не перегружать память коммуникационной аппаратуры - сетевых адаптеров, маршрутизаторов и т. п.

Так как все перечисленные требования трудно совместить в рамках какой-либо одной схемы адресации, то на практике обычно используется сразу несколько схем, так что компьютер одновременно имеет несколько адресов-имен. Каждый адрес используется в той ситуации, когда соответствующий вид адресации наиболее удобен. А чтобы не возникало путаницы и компьютер всегда однозначно определялся своим адресом, используются специальные вспомогательные протоколы, которые по адресу одного типа могут определить адреса других типов.

Наибольшее распространение получили три схемы адресации узлов:

Аппаратные адреса “00-aa-00-62-c6-09” предназначены для сети небольшого или среднего размера, поэтому они не имеют иерархической структуры. Типичным представителем адреса такого типа является адрес сетевого адаптера локальной сети. Такой адрес обычно используется только аппаратурой, поэтому его стараются сделать по возможности компактным и записывают в виде двоичного или шестнадцатеричного значения, например 0081005е24а8. При задании аппаратных адресов обычно не требуется выполнение ручной работы, так как они либо встраиваются в аппаратуру компанией-изготовителем, либо генерируются автоматически при каждом новом запуске оборудования, причем уникальность адреса в пределах сети обеспечивает оборудование. Использование аппаратных адресов связано еще с одним недостатком - при замене аппаратуры, например, сетевого адаптера, изменяется и адрес компьютера.

Числовые адреса. 157.55.85.212 Символьные имена удобны для людей, но из-за переменного формата и потенциально большой длины их передача по сети не очень экономична. Поэтому во многих случаях для работы в больших сетях в качестве адресов узлов используются числовые составные адреса фиксированного и компактного форматов.




Проблема установления соответствия между адресами различных типов, которой занимается специальная сетевая служба ( служба имен ), может решаться как полностью централизованными, так и распределенными средствами.

В случае централизованного подхода в сети выделяется один компьютер (сервер имен), в котором хранится таблица соответствия друг другу имен различных типов, например символьных имен и числовых номеров. Все остальные компьютеры обращаются к серверу имен, чтобы по символьному имени найти числовой номер компьютера, с которым необходимо обменяться данными. Наиболее известной службой централизованного разрешения имен является служба Domain Name System (DNS), используемая в Internet.

Распределенный подход хорош тем, что не предполагает выделения специального компьютера, который к тому же часто требует ручного задания таблицы соответствия имен.

Адресация в компьютерных сетях — это методы идентификации компьютерного оборудования в компьютерных сетях.

Адресация в компьютерных сетях

MAC-адрес, именуемый также физическим адресом или Ethernet-адресом, должен быть присвоен каждому сетевому адаптеру при его создании. Размер физического адреса равняется шести байтам. Этот сетевой адрес выступает как уникальный, то есть, компаниям-производителям выделяются списки адресов, в границах которых они должны выпускать карты.

Физический адрес отображается в форме шести групп шестнадцатеричных цифр по две в каждой, то есть, в шестнадцатеричной записи байта. Первые три байта считаются префиксом, что позволяет определить 224 разных комбинации или почти 17 млн. адресов, и именно они закрепляются за производителем. Адаптер осуществляет «прослушивание» сети, получает адресованные ему кадры и широковещательные кадры с адресом FF:FF:FF:FF:FF:FF, и выполняет отправку кадров в сеть, при этом в любой момент времени в сегменте узла сети может находиться только один кадр.

Фактически, MAC-адрес является соответствием не компьютеру, а его сетевому интерфейсу. То есть, когда компьютер обладает несколькими интерфейсами, то это значит, что каждому интерфейсу должен быть присвоен свой физический адрес. Любой сетевой карте должен соответствовать собственный MAC-адрес и IP-адрес, который является уникальными в границах глобальной сети.

MAC-адреса применяются на физическом и канальном уровнях, то есть, в однородной среде. Для того чтобы обеспечить возможность связи друг с другом компьютеров, входящих в состав больших составных сетей, применяется другой вид адресов, а именно IP-адреса.

Введение

Для обеспечения возможности идентификации компьютеров в различных информационных и вычислительных сетях, им должны быть присвоены явные адреса. Главными типами адресации являются:

  1. MAC-адреса.
  2. IP-адреса.
  3. Доменные адреса.
  4. URL адреса.

Готовые работы на аналогичную тему

IP-адресация считается главным видом адресации в сети Интернет. IP-адрес должен обозначать не только компьютер, но и сегмент сети, в котором расположен этот компьютер. К примеру, адрес 192.123.004.010 обозначает узел с номером десять в сети 192.123.004. Другой узел в этом же сегменте может иметь номер двадцать и так далее. Сети и узлы в них являются отдельными объектами с отдельными номерами.

IP-адрес может быть представлен в виде 32-разрядного двоичного числа (к примеру, 11000000 01111011 00001010). Для обеспечения большего удобства это число подразделяется на четыре восьмиразрядных поля, которые называются октетами. TCP/IP отображает данные двоичные октеты в виде их десятичных эквивалентов (в приведенном выше примере это 192.123.004.010), что способно облегчить применение IP-адресов для пользователей.

Указанные четыре октета в различных сетях могут обозначать различные вещи. В некоторых компаниях может быть создана единая большая сеть, но обладающая миллионами узлов. В таком случае первый октет адреса применяется для обозначения сети, а оставшиеся три октета могут использоваться для обозначения отдельных рабочих станций. Адрес такого типа принято называть адресом класса А. Самыми частыми потребителями адресов класса А являются поставщики сетевых услуг (провайдеры), которые занимаются обслуживанием очень больших сетей, имеющих тысячи конечных пунктов.

Отдельные организации могут иметь тысячи узлов, которые включены в состав набора сетей. В таком случае применяются адреса класса В, в которых первые два октета, то есть шестнадцать бито, могут быть использованы для обозначения сети, а последние два служат для обозначения отдельных узлов. Наиболее известными потребителями адресов класса В являются университеты и крупные организации.

Самым наиболее часто используемым является адрес класса С, в котором первые три октета, то есть, двадцать четыре бита, предназначены для того чтобы обозначить сегмент, а последний октет используется для обозначения рабочих станций. Подобная система адресации лучше всего может подойти для случая, когда существует большое число отдельных сетей, при этом в составе каждой из них имеется всего несколько десятков узлов. Адреса данного типа наиболее часто можно повстречать в локальных сетевых средах, где в одном сетевом сегменте присутствует примерно сорок узлов.

Когда осуществляется соединение сети класса А с сетью класса В, то маршрутизатор должен понять, как ему можно отличить одну сеть от другой. В противном случае он решит, что трафик, приходящий из сети класса С, который предназначен для узла этого класса, может быть идентифицирован по последнему октету. А в реальности узел класса А должен обозначаться последними тремя октетами, что означает большую разницу. Не обладая такой информацией, маршрутизатор будет пытаться отыскать трех октетную сеть, к которой подключался одно октетный хост. На самом же деле ему следует послать информационные данные в одно октетную сеть, в которой располагается трех октетный хост.

Стек протоколов TCP/IP применяет три первых бита первого октета, для того чтобы идентифицировать класс сети, давя возможность устройствам в автоматическом режиме выполнять распознавание соответствующих типов адресов. У адресов класса А первый бит устанавливается в нуль, а остальные семь битов предназначены для идентификации сетевой части адреса (как было отмечено выше, в адресах класса А первый октет предназначен для обозначения сети, а остальные три служат для обозначения узлов). Так как могут быть использованы только семь битов, максимально возможным количеством сетей является128.

Номера сетей 000 и 127 являются зарезервированными для применения программным обеспечением, по этой причине данное число должно быть уменьшено до 126 (001 - 126). А, для того чтобы обозначить узлы, могут быть использованы 24 бита, то есть, для каждой из этих сетей максимальным количеством узлов является 16 777 216.

Одной из проблем, которую нужно учитывать при объединении трех и более компьютеров, является проблема их адресации. К адресу узла сети и схеме его назначения можно предъявить несколько требований.

Адрес должен уникально идентифицировать компьютер в сети любого масштаба.

Схема назначения адресов должна сводить к минимуму ручной труд администратора и вероятность дублирования адресов.

Адрес должен иметь иерархическую структуру, удобную для построения больших сетей. Эту проблему хорошо иллюстрируют международные почтовые адреса, которые позволяют почтовой службе, организующей доставку писем между странами, пользоваться только названием страны адресата и не учитывать название его города, а тем более улицы. В больших сетях, состоящих из многих тысяч узлов, отсутствие иерархии адреса может привести к большим издержкам - конечным узлам и коммуникационному оборудованию придется оперировать с таблицами адресов, состоящими из тысяч записей.

Адрес должен иметь по возможности компактное представление, чтобы не перегружать память коммуникационной аппаратуры - сетевых адаптеров, маршрутизаторов и т. п

Аппаратные (hardware) адреса. Эти адреса предназначены для сети небольшого или среднего размера, поэтому они не имеют иерархической структуры. Типичным представителем адреса такого типа является адрес сетевого адаптера локальной сети. Такой адрес обычно используется только аппаратурой, поэтому его стараются сделать по возможности компактным и записывают в виде двоичного или шестнадцатеричного значения, например 0081005е24а8. При задании аппаратных адресов обычно не требуется выполнение ручной работы, так как они либо встраиваются в аппаратуру компанией-изготовителем, либо генерируются автоматически при каждом новом запуске оборудования, причем уникальность адреса в пределах сети обеспечивает оборудование.

Символьные адреса или имена. Эти адреса предназначены для запоминания людьми и поэтому обычно несут смысловую нагрузку. Символьные адреса легко использовать как в небольших, так и крупных сетях.

Числовые составные адреса. Символьные имена удобны для людей, но из-за переменного формата и потенциально большой длины их передача по сети не очень экономична. Поэтому во многих случаях для работы в больших сетях в качестве адресов узлов используют числовые составные адреса фиксированного и компактного форматов. Типичным представителями адресов этого типа являются IP- и IPX-адреса.

Проблема установления соответствия между адресами различных типов, которой занимается служба разрешения имен, может решаться как полностью централизованными, так и распределенными средствами. В случае централизованного подхода в сети выделяется один компьютер (сервер имен), в котором хранится таблица соответствия друг другу имен различных типов, например символьных имен и числовых номеров. Все остальные компьютеры обращаются к серверу имен, чтобы по символьному имени найти числовой номер компьютера, с которым необходимо обменяться данными.




6. Многоуровневый подход к стандартизации в компьютерных сетях. Понятия «протокол», «интерфейс», «стек протоколов». Характеристика стандартных стеков коммуникационных протоколов.

В семействе протоколов TCP/IP используются три типа адресов: локальные (физические, аппаратные), IP-адреса и символьные доменные имена (доменная адресация).

Локальные адреса уникальны для каждого сетевого соединения, они используются для доставки данных в пределах подсети, являющейся элементом составной интерсети. Вопросы физической адресации решаются на канальном уровне стека TCP/IP. Если подсетью является локальная сеть, то локальный адрес – это МАС-адрес, который назначается сетевым адаптерам и сетевым интерфейсам маршрутизаторов. МАС-адрес для всех технологий локальных сетей имеет формат 6 байт.

Локальные адреса присваиваются сетевой плате адаптера компьютера при ее изготовлении. Эти адреса выбираются производителем сетевого интерфейсного оборудования из выделенного для него по лицензии адресного пространства. При замене платы сетевого адаптера меняется и ее локальный адрес.

Поскольку локальные и IP-адреса независимы друг от друга (между ними нет никакой алгоритмической связи), для отображения IP-адресов в локальные адреса (при передаче данных) и локальных адресов в IP-адреса (при приеме данных) необходимы соответствующие средства.

Определение локального адреса по IP-адресу осуществляется по протоколу ARP (Address Resolution Protocol, протокол разрешения адресов), который работает различным образом в зависимости от того, какой протокол канального уровня работает в данной подсети. Если подсетью является Ethernet, то в ней предусматривается широковещательный режим работы, если же это протокол глобальной сети (Х.25, Frame Relay и др.), то он, как правило, не поддерживает такой режим. Основным инструментом работы протокола ARP является таблица разрешения адресов, или ARP-таблица. Эта таблица хранится в памяти компьютера и содержит строки соответствия между IP-адресами и локальными адресами для каждого узла сети. Если требуется по IP-адресу найти его локальный адрес, ищется в таблице строка с соответствующим IP-адресом и по нему в этой строке определяется локальный адрес. ARP-таблица заполняется автоматически модулями ARP по мере необходимости. Каждый компьютер сети имеет отдельную ARP-таблицу для каждого своего сетевого интерфейса. Отображение с помощью ARP-таблиц выполняется только для отправляемых IP-пакетов, так как только в момент отправки создаются заголовки пакетов.

Обратная задача по отображению адресов, т.е. определение IP-адреса по локальному адресу, решается с помощью протокола RARP (Reverse Address Resolution Protocol, протокол обратного разрешения адресов). Протоколы ARP и RARP абсолютно независимы.

IP-адресация в сети Internet базируется на концепции составной сети, состоящей из хостов и других сетей, причем под хостом понимается узел сети (компьютер рабочей станции, сервер, маршрутизатор), который может принимать и передавать IP-пакеты. Хосты соединяются через одну или несколько сетей (подсетей сети Internet), и адрес любого из них состоит из адреса сети и адреса хоста в этой сети. IP-адреса являются основным типом адресов, используемых сетевым уровнем для передачи пакетов между сетями.

IP-адрес представляется четырьмя десятичными числами, разделенными точками (например, 108.25.17.100). Каждое из этих чисел не может превышать 255 и представляет один байт 4-байтного адреса. 32-битный адрес состоит из двух частей: номера сети и номера узла. Длина каждой части является переменной величиной. Номер сети (он представляется старшими битами адреса) выбирается администратором произвольно, либо назначается по рекомендации специальной административной службы Internet. Номер узла назначается независимо от его локального адреса. Конечный узел (компьютер, маршрутизатор) может входить в несколько IP-сетей, поэтому каждый порт узла должен иметь собственный IP-адрес. Следовательно, IP-адрес узла идентифицирует не весь узел, а его сетевое соединение (порт), т.е. точку доступа модуля IP-протокола к сетевому интерфейсу.

IP-пакет содержит два адреса – отправителя и получателя. Оба адреса статические, т.е. не меняются на протяжении всего пути пакета. При доставке пакета адресату используются таблицы маршрутов, которые устанавливаются на каждом хосте сети. Различные протоколы маршрутизации, реализующие алгоритмы маршрутизации, обеспечивают построение и настройку этих таблиц.




Доменная адресация. Для пользователей применение 32-разрядных IP-адресов, однозначно идентифицирующих любой сетевой компьютер, не очень удобно. Поэтому в Internet принято всем компьютерам присваивать имена, что позволяет пользователям лучше ориентироваться в киберпространстве сети.

На сетевом уровне адресация пакетов осуществляется не по именам, а по IP-адресам, т.е. для непосредственной адресации пакетов адресация по именам не годится. Поэтому необходим механизм установления соответствия IP-адресов и имен компьютеров (алгоритмическое соответствие между ними отсутствует).

Символьные имена в IP-сетях называются доменами и строятся по иерархическому признаку, т.е. различаются домены нижнего уровня, домены верхнего уровня и домены средних (промежуточных уровней). Адресация с помощью доменов получила название «доменная адресация».

Система доменной адресации DNS (Domain Name System) в сети Internet рассматривается как метод иерархической организации адресов в этой сети, а также как механизм, используемый для получения по имени компьютера его IP-адреса. В своей работе этот механизм использует таблицы соответствия имен и IP-адресов, создаваемые администраторами.

В США шесть доменов высшего уровня определены для различных организаций:

• gov. – правительственные организации;

• mil. – военные организации;

• edu. – образовательные организации;

• com. – коммерческие организации;

• org. – общественные организации;

• net. – организации, предоставляющие сетевые услуги.

По соглашению каждая страна мира имеет двухсимвольное имя, представленное доменом верхнего уровня этой страны. Для России это «ru», для США – «us», для Великобритании – «uk», для Канады – «ca» и т.п.

Изначально в сети Internet в рамках системы DNS была введена система адресации по административному, а не по территориальному принципу. При этом самый верхний домен (домен верхнего уровня) мог принимать одно из определенного числа значений, определяющих вид сети или характер организации (коммерческие организации США, правительственные учреждения США и т.д.). Все поддомены, расположенные в адресе левее домена верхнего уровня, последовательно уточняют положение адресата внутри этого домена. Например, домен верхнего уровня в адресе означает, что адресат находится в одном из правительственных учреждений США, следующий слева домен уточняет, в каком именно учреждении, следующий – указывает подразделение этого учреждения и, наконец, самый левый домен в адресе указывает на конкретный компьютер в этом подразделении.

После включения в сеть Internet сетей Европы начал использоваться территориальный принцип адресации, в соответствии с которым в качестве домена верхнего уровня употребляется код страны адресата, затем следует (если адрес читать справа налево) код региона и, наконец, код компьютера адресата. В дальнейшем принцип адресации в Internet получился смешанный: домен верхнего уровня принимает уникальное значение общеизвестной организации или сети, а затем идут коды, характерные для территориального принципа адресации. Это, однако, не затрудняет почтовые службы: если в правой части адреса записан домен типа gov, что означает «правительственное учреждение США», то адресат находится в США, поэтому код страны не нужен. Как правило, во все места, которые адресуются по типу организации, можно добраться и используя код страны.

В сетях, не являющихся IP-сетями, но использующих для регистрации имен компьютеров систему DNS, часто применяются адреса, в которых домен верхнего уровня указывает название сети адресата. Это позволяет доставить электронную почту из сетей не Internet, не имеющих IP-адреса.

Большим преимуществом системы DNS является то, что она исключает зависимость имен узлов и их сетевых адресов от центрально установленного файла связи. В IP-сетях каждый компьютер или локальная сеть компьютеров имеет 4-байтный IP-номер, и машины, осуществляющие транспортировку почты, снабжаются таблицами соответствия мнемонических адресов и IP-адресов. Распределением IP-номеров занимается специальная служба сети Internet, а их регистрация возложена на региональные администрации сетей. В странах СНГ вопросами регистрации и выделения IP-номеров занимается специальная служба в сети РЕЛКОМ.

Но более эффективно для адресации использовать не просто доменный адрес, а универсальный локатор ресурсов – URL-адрес (Universal Resource Locator), который дополнительно к доменному адресу содержит указания на используемую технологию доступа к ресурсам и спецификацию ресурса внутри файловой структуры компьютера.

adresaciya-v-kompyuternyx-setyax

Для передачи данных в локальных и глобальных сетях устройство-отправитель должно знать адрес устройства-получателя. Поэтому каждый сетевой компьютер имеет уникальный адрес, и не один, а целых три адреса: физический или аппаратный (MAC-адрес); сетевой (IP-адрес); символьный (обычное имя компьютера или полное доменное имя).

Физический адрес компьютера

Физический (аппаратный) адрес компьютера зависит от технологии, с помощью которой построена сеть. В сетях Ethernet это MAC-адрес сетевого адаптера. MAC-адрес жестко “зашивается” в сетевую карту ее производителем и обычно записывается в виде 12 шестнадцатеричных цифр (например, 00-03-BC-12-5D-4E).

Это гарантированно уникальный адрес: первые шесть символов идентифицируют фирму-производителя, которая следит, чтобы остальные шесть символов не повторялись на производственном конвейере. MAC-адрес выбирает производитель сетевого оборудования из выделенного для него по лицензии адресного пространства. Когда у машины заменяется сетевой адаптер, то меняется и ее MAC-адрес.

mac-адрес

Узнать MAC-адрес сетевой карты вашего компьютера можно следующим образом:
1. Зайдите в “Пуск” – “Выполнить” – введите с клавиатуры команду cmd – “ОК”.
2. Введите команду ipconfig /all и нажмите клавишу Enter.
Данная команда позволяет получить полную информацию обо всех сетевых картах ПК. Поэтому найдите в этом окошке строку Физический адрес – в ней будет обозначен MAC-адрес вашей сетевой карты. В моем случае это выглядит так:

Сетевой адрес компьютера

Сетевой адрес, или IP-адрес используется в сетях TCP/IP при обмене данными на сетевом уровне. IP расшифровывается как Internet Protocol – протокол интернета. IP-адрес компьютера имеет длину 32 бита и состоит из четырех частей, именуемых октетами. Каждый октет может принимать значения от 0 до 255 (например, 90.188.125.200). Октеты отделяются друг от друга точками.

IP-адрес компьютера, например 192.168.1.10, состоит из двух частей – номера сети (иногда называемого идентификатором сети) и номера сетевого компьютера (идентификатора хоста). Номер сети должен быть одинаковым для всех компьютеров сети и в нашем примере номер сети будет равен 192.168.1. Номер компьютера должен быть уникален в данной сети, и компьютер в нашем примере имеет номер 10.
IP-адреса компьютеров в разных сетях могут иметь одинаковые номера. Например, компьютеры с IP-адресами 192.168.1.10 и 192.168.15.10 хоть и имеют одинаковые номера (10), но принадлежат к разным сетям (1 и 15). Поскольку адреса сетей различны, то компьютеры не могут быть спутаны друг с другом.

Чтобы отделить номер сети от номера компьютера, применяется маска подсети. Чисто внешне маска подсети представляет собой такой же набор из четырех октетов, разделенных между собой точками. Но, как правило, большинство цифр в ней – это 255 и 0.


255 указывает на биты, предназначенные для адреса сети, в остальных местах (которым соответствует значение 0) должен располагаться адрес компьютера. Чем меньше значение маски, тем больше компьютеров объединено в данную подсеть. Маска сети присваивается компьютеру одновременно с IP-адресом. Чтобы было понятно, приведем простой пример: сеть 192.168.0.0 с маской 255.255.255.0 может содержать в себе компьютеры с адресами от 192.168.0.1 до 192.168.0.254. А сеть 192.168.0.0 с маской 255.255.255.128 допускает адреса от 192.168.0.1 до 192.168.0.127.

Сети с большим количеством компьютеров обычно делят на части, называемые подсетями. Деление на подсети применяется для обеспечения повышенной безопасности и разграничения доступа к ресурсам различных подсетей. Компьютеры разных подсетей не смогут передавать пакеты друг другу без специального устройства – маршрутизатора, а, следовательно, никто не сможет проникнуть в защищенную таким образом подсеть. Чтобы создать подсети, часть места в IP-адресе, отведенном для номера хоста, отдают под номера подсети.
Рассмотрим пример, когда у нас в локальной сети 50 компьютеров и требуется настроить их так, чтобы 20 компьютеров могли “общаться” между собой, но не смогли передавать и принимать данные от остальных 10 компьютеров, которые также должны общаться только между собой. Решение этой задачи довольно простое – делим нашу сеть на две подсети . В первой подсети “раздаем” компьютерам (их у нас 20) номера из диапазона 192.168.1.1 – 192.168.1.20, а во второй подсети для оставшихся 10 компьютеров раздаем номера из диапазона 192.168.2.1 – 192.168.2.10.

ip-адрес и маска подсети

Если ваш компьютер подключен к локальной сети или интернет, вы можете узнать его IP-адрес и маску подсети уже знакомым нам способом:
1. Зайдите в “Пуск” – “Выполнить” – наберите cmd и нажмите “ОК”.
2. В открывшемся окне введите команду ipconfig /all и нажмите клавишу Enter.
IP-адрес компьютера и маску подсети вы увидите в соответствующих строках:Номер сети может быть выбран администратором произвольно, либо назначен по рекомендации специального подразделения Интернет (Network Information Center – NIC), если сеть должна работать как составная часть Интернет. Обычно интернет-провайдеры получают диапазоны адресов у подразделений NIC, а затем распределяют их между своими абонентами. Это внешние IP-адреса (доступные из интернета), например 90.188.125.200.

Для локальных сетей зарезервированы внутренние IP-адреса (к ним нельзя получить доступ через интернет без специального ПО) из диапазонов:

  • 192.168.0.1 – 192.168.254.254
  • 10.0.0.1 – 10.254.254.254
  • 172.16.0.1 – 172.31.254.254

Из этих диапазонов вы, как системный администратор, и будете назначать адреса компьютерам в вашей локальной сети. Если вы “жестко” зафиксируете IP-адрес в настройках компьютера, то такой адрес будет называться статическим – это постоянный, неизменяемый IP-адрес ПК.
Существует и другой тип IP-адресов – динамические, которые изменяются при каждом входе компьютера в сеть. За управление процессом распределения динамических адресов отвечает служба DHCP. О ней я расскажу вам в одной из следующих статей.

Имя сетевого компьютера

Помимо физического и сетевого адресов компьютер может также иметь символьный адрес – имя компьютера . Имя компьютера – это более удобное и понятное для человека обозначение компьютера в сети. Различают NetBIOS имена и полные доменные имена компьютеров.

Имена NetBIOS используются в одноранговых локальных сетях, в которых компьютеры организованы в рабочие группы. NetBIOS – протокол для взаимодействия программ через компьютерную сеть. Протокол NetBIOS распознает обычные буквенные имена компьютеров и отвечает за передачу данных между ними. Проводник Windows для просмотра локальной сети предоставляет папку Сетевое окружение, автоматически отображающей имена NetBIOS компьютеров вашей локальной сети.

Имя NetBIOS может содержать не более 15 символов и должно быть на английском языке.

Читайте также: